Solar neutrino theory and open questions

Aldo Serenelli

Snowmass workshop – 07.12.20

Institute of **Space Sciences**

Experimental status: pp-chains

pp – 10% (Borexino, 2018)

pep – 10% (Borexino, 2018)

⁸B – 2% (SNO+SuperK)

⁷Be – 3% (Borexino)

Experimental status: CN neutrinos

Solar Composition

Revision of solar abundances (Asplund et al., Caffau et al.)

Large CNO reduction ~20-30% Moderate refractories ~10%

- ~ half from 3D effects
- ~ half from atomic data, NLTE, blends

fundamental difference between 3D groups related to choice of lines (good atomic data, blends) Solar modeling / abundances crisis after ♥ revision of solar abundances

Sound speed inversions favor HZ-SSM However, entropy inversions favor Z=0.008-0.014 (even lower than LZ; Buldgen et al. 2017)

Degeneracy composition - opacity

Opacity – experimental state of the art

Fe opacity @Sandia Lab -- > 7% increase of Rosseland mean opacity (Bailey et al. 2015)

Missing quasi continuum opacity in models for Fe

Opacity – experimental state of the art

Fe opacity @Sandia Lab -- > 7% increase of Rosseland mean opacity (Bailey et al. 2015)

Further experiments for Cr and Ni reveal (Nagayama et al. 2019):

- > systematics for open L-shell configurations (Cr and Fe)
- line shape disagreement for all elements (problems with plasma interactions)
- ▶ but... quasi continuum opacity agrees for Cr and Ni → unknown T dependence or problems in Fe experiment

Heavy elements – state of the art

Helioseismology:

HZ preferred by sound speed inversions, depth of convective envelope

LZ preferred by entropy inversions

Opacity experiments:

point towards deficient opacity calculations but Fe results not fully understood

Spectroscopic determinations:

new work ongoing (Bergemann et al.): new model atmospheres (including chromosphere), NLTE modeling of Ni (blended line with O) and new atomic O data (new model atom for NLTE). Future revision of C & N planned.

CN measurement by v-experiments independent check on C(+N) < 10%

Solar luminosity

Combination of helioseismic + neutrino constraints (model dependent) exclude other channels at 3% (3- σ)

Following Borexino 2018:

$$L_{\rm exp} = (3.89^{+0.35}_{-0.42}) \times 10^{33} {\rm erg/s} = (1.01^{+0.09}_{-0.11}) {\rm L}_{\odot}$$

pp measurement at 1% (1- σ) would yield comparable constraints (model indepdent)

Summary – wish list

- \triangleright pp measurement at 1% (1- σ) would yield comparable constraints (model indepdent)
- ➤ CN measurement < 10%
 - solar abundance problem
 - but C+N abundance for solar physics in general: test on solar models, e.g. mixing initial (in)homogeneity, e.g. accretion of protoplanetary disk w/different composition